Solutions

SOLUTIONS TO PRACTICE FINAL EXAMINATION

Please circle the name of your instructor:

- 1. Calculators may not be shared. Programmable calculators are not permitted.
- 2. No books or extra paper are permitted.
- 3. In order to obtain full credit, you must show the method used to solve all

This exam set consists of questions. Please ensure that you have a complete set.

1.	a)	Carry out the following calculations. Assume the numbers represent measurements and
		express your answers to the proper number of significant figures.

	i)	$(12.688 < 10.0) \times (7.85 + 2.666) = 28$	(1 mark)
	ii)	$(12.61 + 0.22 + 0.037) \div 0.04 = 3 \times 10^2$	(1 mark)
b)	Expre	ess the following numbers in scientific notation.	
	i)	$0.000771 = \frac{7.71 \times 10^{4}}{10^{4}}$	(1 mark)
	ii)	$157 = 1.57 \times 10^2$	(1 mark)
c)	Conv	ert the following:	
	i)	$205 \text{ K} = \underline{68^{\circ} \text{ C}}^{\circ} \text{C}$	(1 mark)
	ii)	$25.7 \text{ g} = 2.57 \times 10^4 \text{ mg} \text{mg}$	(1 mark)
	iii)	$102^{\circ}F = \underline{39^{\circ}C}^{\circ}C$	(1 mark)

d) Pumice is a volcanic rock that contains many trapped air bubbles. A 155 g sample of pumice is found to have a volume of 163 mL.

i) What is the density of pumice in $g mL^{-1}? = 155 / 163 = 0.951 g/mL$ (1 mark)

ii)	What is the volume occupied by a 4.56 kg sample of pumice? $=$	
	$4560 / 0.951 = 4.80 \times 10^3 \text{ mL}$	(1 mark)

iii)	Will pumice float or sink in ethyl alcohol?	
	(density of ethyl alcohol is 0.790 g/mL at 20°C) = It will sink	(1 mark)

2.

b) Write the chemical formulas for the following compounds:

(5 marks)

7.

b) The following are some physical and chemical properties of metals and nonmetals. Match the stated properties in column one with the type of element (or) that can exhibit the given property. State your answer in column two

(6 marks)

Have high melting point	Metal
Have no lustre	Nonmetal
Mostly hard but malleable	Metal
May combine with each other	Nonmetal
Have high electrical conductivity	Metal
Most have high densities	Metal
Will generally not be ductile but rather brittle	Nonmetal

9. Complete the following table by providing the missing information:

Nuclear Symbol	Atomic Number	Mass Number	Number of Neutrons	Number of Electrons	Number of Protons
$^{32}_{16}S$	16		16	16	16
$^{80}_{35}{ m Br}$	35	80	45	35	35 3

(9 marks)

5

11. If 3.45 g bismuth metal, Bi, is reacted with chlorine gas according to the <u>unbalanced</u> chemical equation:

$$Bi(s) + Cl_2(g) = BiCl_3(s)$$

calculate the mass in grams of chlorine needed to completely react with the bismuth metal and the mass in grams of bismuth (III) chloride formed.

(4 marks)

Molar Mass:
$$Bi = 208.98$$
 $Cl_2 = 2(35.453) = 70.906$

$$BiCl_3 = (208.98) + 3(35.453) = 315.34$$

$$2 \operatorname{Bi}(s) + 3 \operatorname{Cl}_2(g) \qquad 2 \operatorname{BiCl}_3(s)$$

$$n_{Bi} = \frac{3.45 \text{ g}}{208.98 \text{ g mol}^{-1}} = 0.0165 \text{ mol Bi}$$

$$n_{Cl_2} = 0.0165 \text{ mol Bi} \left(\frac{3 \text{ mol Cl}_2}{2 \text{ mol Bi}}\right) = 0.0248 \text{ mol}$$

$$n_{BiCl_3} = 0.0165 \text{ mol Bi} \left(\frac{2 \text{ mol BiCl}_3}{2 \text{ mol Bi}}\right) = 0.0165 \text{ mol}$$

$$m_{Cl_2} = 0.0248 \text{ mol} \left(\frac{70.906 \text{ g Cl}_2}{1 \text{ mol}}\right) = 1.76 \text{ g Cl}_2$$

$$m_{BiCl_3} = 0.0165 \text{ mol} \left(\frac{315.34 \text{ g BiCl}_3}{1 \text{ mol}}\right) = 5.20 \text{ g BiCl}_3$$

12. When 2.50 g potassium superoxide, KO_2 , reacts with 4.50 g carbon dioxide according to the <u>unbalanced</u> chemical equation:

$$KO_2$$
 (s) + CO_2 (g) K_2CO_3 (s) + O_2 (g)

0.799 g oxygen gas are produced. Calculate:

- a) The theoretical yield of oxygen.
- b) The percent yield of oxygen in this reaction.

(5 marks)

Molar Mass: $KO_2 = 71.10$ $CO_2 = 44.01$ $O_2 = 32.00$ $K_2CO_3 = 138.21$ $4 KO_2 (s) + 2 CO_2 (g)$ $2 K_2CO_3 (s) + 3 O_2 (g)$ 2.50 g 0.0050 M/O

 $n_{KO_2} = \frac{2.50 \text{ g}}{71.10 \text{ g mol}^{-1}} = 0.0352 \text{ mol} \text{KO}_2$ $n_{CO_2} = \frac{4.50 \text{ g}}{44.01 \text{ g mol}^{-1}} = 0.102 \text{ mol} \text{CO}_2$

Assume KO_2 is the Limiting Reactant

Number of moles
$$CO_2$$
 needed $n_{CO_2} = 0.0352 \text{ mol KO}_2$ $\frac{2 \text{ mol CO}_2 l}{4 \text{ mol KO}_2} = 0.0176 \text{ mol CO}_2$

Number of moles CO_2 needed (0.0176 mol) < Number of moles present (0.102 mol) There is sufficient CO_2 so the assumption is correct.

a) Theoretical yield of oxygen;

 $= 1360 \text{Tc}09.735 \underbrace{26(\text{ed}7(1\text{H}147.57)13()62(0)]}_{2}$ $= \underbrace{3000}_{2}$

13. a) Perform the following molar concentration calculations:

i) Calculate the molar concentration of 5.55 g CaCl₂ in 125 mL of solution. (2 marks)

Molar Mass: $CaCl_2 = (40.08) + 2(35.453) = 110.99$

$$n_{CaCl_{2}} = \frac{5.55 \text{ g}}{110.99 \text{ g mol}^{-1}} = 0.0500 \text{ mol}$$
$$V = 125 \text{mL} \left(\frac{10^{-3}\text{L}}{\text{mL}}\right) = 0.125 \text{ L}$$
$$[CaCl_{2}] = \frac{0.0500 \text{ mol}}{0.125 \text{ L}} = 0.400 \text{ M}$$

ii) Calculate the molar concentration of ammonium ion in a 0.333 M solution of ammonium phosphate. (2)

(2 marks)

Formula of ammonium phosphate $(NH_4)_3PO_4$

[NH] _____

14. a) Given that 24.0 mL of 0.170 M sodium iodide reacts with 0.209 M mercury (II) nitrate according to the unbalanced equation:

 $Hg(NO_3)_2$

15. a) A 5.00 L sample of krypton gas contains 1.51×10^{24} atoms at 25° C. What is the pressure of the krypton gas in units of atm?

(2 marks)

$$\begin{split} n_{Kr} &= 1.51 \ x \ 10^{24} \ \text{atoms} \ Kr \bigg(\frac{mol}{6.022 \ x \ 10^{22} \ \text{atoms}} \bigg) = 2.51 \ mol\\ V &= 289K\\ T &= 25 + 273 = 289K\\ P &= \frac{nRT}{V} = \frac{(2.51 \ mol) (0.08206 \ L \ \text{atm} \ \text{K}^{-1} \ \text{mol}^{-1}) (298 \ \text{K})}{5.00 \ \text{L}} = 12.3 \ \text{atm} \end{split}$$

b) A sample of unknown gas weighs 1.95 g and occupies 3.00 L at 1.25 atm and 20°C. What is the molar mass of the unknown gas?

(2 marks)

Т=20+273=293 К

$$MM = \frac{mRT}{PV} = \frac{(1.95 \text{ g})(0.08206 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1})(293 \text{ K})}{(1.25 \text{ atm})(3.00 \text{ L})} = 12.5 \text{ g mol}^{-1}$$