DAWSON COLLEGE MATHEMATICS DEPARTMENT Final Examination

Mathematics 201-NYC-05 Linear Algebra (Regular) Instructors: Melanie Beck, Yann Lamontagne Date: Tuesday, May 18, 2010 Time: 2:00 - 5:00

1. Consider the following system of equations:

9 <i>x</i>		18 <i>y</i>	+	45 <i>z</i>	=	39
2 <i>x</i>	+	$5\bar{y}$		11 <i>z</i>	=	28=3 ;
7 <i>x</i>		17́y	+	38 <i>z</i>	=	97=3

- (a) (5 marks) Find all solutions using Gauss-Jordan elimination.
- (b) (2 marks) Find any two particulars solutions.
- 2. Consider the matrices

$$A = \begin{bmatrix} 3 & 2 & 1 & \# & & \\ 3 & 1 & 2 & B & \\ 1 & 4 & 0 & B & \\ \end{bmatrix} \begin{bmatrix} 1 & 3 & \# & \\ 1 & 6 & C & \\ 3 & 4 & C & \end{bmatrix} \begin{bmatrix} h & 1 & 3 & 2 & i \\ 0 & 3 & 2 & C & \\ 0 & 3 & 2 & D & \\ \end{bmatrix} \begin{bmatrix} h & 1 & 3 & i \\ 0 & 3 & C & \\ 0 & 3 & C & \\ \end{bmatrix} \begin{bmatrix} h & 1 & 3 & i \\ 0 & 3 & C & \\ 0 & 3 & C & \\ 0 & 1 & 0 & C & \\$$

Compute whenever it is possible:

- (a) (2 marks) A⁻¹
- (b) (2 marks) C⁻¹
- (c) (2 marks) $(3A \ I)B \ C^T$
- (d) (2 marks) det(3B)
- (e) (2 marks) trace $(AC)^{T}$
- 3. Let $A = \begin{pmatrix} 2 & 2 & 1 & 0 & 0 & 3 \\ 4 & 0 & 2 & 0 & 1 & 5 \\ 0 & 3 & 1 & 1 & 5 \\ 1 & 2 & 0 & 0 & 0 & 0 \end{pmatrix}$ and B = 4 watrix with det(B) = 3.
 - (a) (3 marks) Find det(A).
 - (b) (3 marks) Find det($3A^{-1}B^2$).
- 4. (5 marks) Prove that if $A^T A = A$, then A is symmetric and $A = A^2$.
- 5. (5 marks) Show that if a square matrix A satis es $A^2 = 4A + I = 0$, then A is invertible and $A^{-1} = 4I A$.
- 6. **(4 marks)** Solve for *x*: $\begin{pmatrix} x & 0 & 3 \\ 0 & x + 1 & 5 \\ 0 & 0 & 2 \end{pmatrix}$ $4 = \begin{pmatrix} 4 & 4 \\ x & 5 \end{pmatrix}$
- 7. Consider the matrices

$$A = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 2 \\ 2 & 3 & 4 \end{bmatrix} B = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & 2 \\ 2 & 3 & 4 \end{bmatrix} B = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & 2 \\ 2 & 3 & 4 \end{bmatrix} C = \begin{bmatrix} 1 & 2 & 3 = 2 \\ 0 & 2 & 1 = 2 \\ 0 & 7 & 7 \end{bmatrix}$$

- (a) (2 marks) Is it possible to nd an elementary matrix E_1 such that $E_1A = B$? If yes, what is E_1 ? If no, justify.
- (b) (2 marks) Is it possible to nd an elementary matrix E_2 such that $E_2B = C$? If yes, what is E_2 ? If no, justify.
- 8. Consider the following system of equations:

- (a) (3 marks) Solve the system using Cramer's rule.
- (b) (3 marks) Solve the system using the inverse of A.

- 9. Given u = (3,0,1), v = (-2,1,2) and w = (4, -2,1), nd
 - (a) **(2 marks)** *ku vk*
 - (b) (2 marks)