DAWSON COLLEGE

DEPARTMENT OF MATHEMATICS

1. a) Solve the following system of linear equations by Gauss-Jordan elimination:

$$x + 2y - z = 1$$

 $5x + 11y - 4z = 6$
 $4x + 8y - 3z = 4$

b) A construction company orders a total of 7600 nuts, bolts, and washers for \$462.21, including \$28.21 in sales tax. In the order the total number of nuts and bolts is 400 more than the number of washers. If the nuts cost 5¢ each, the bolts cost 12¢ each, and the washers cost 3¢ each, how many of each are in the order?

2. You got a contract to make bolts. See the following figure for specifications. Find the length X of the piece of stock needed to stamp the bolthead.

2. Timil the algebra and the Jimes, Tr. Cit. 1. 111 ... t. . t.

figure:

4. Find the beltlength of the drive in the following figure:

5. Find X and Y in the following figure.

6. You have to program an NC drilling machine to drill the holes of the boltcircle in the following figure:

Find the coordinates of the hole A.

7. Find the coordinates of the point A in the following figure:

8. Find X and Y in the following figure:

9. a) Solve for x the following equation:

$$\sqrt{2x+1} - \sqrt{3x+4} = -1$$

- b) Find the equation of the parabola passing through the points: (1,2), (-1,6) and (2,9).
- 10. a) Find the radius and the center of the circle with the following equation:

$$x^2 + y^2 + 12x - 4y - 9 = 0$$

b) Find the exact value for the area of intersection of the circle v2 1, 1,2 - 62 with

ANSWERS:

1. a)
$$x=-1$$
, $y=1$, $z=1$ b) $n=2200$, $b=1800$, $w=3600$

2.
$$X = \frac{128\sqrt{2}}{\sqrt{11}} \approx 57.62024$$
 3. $X = 168$, $Y \approx 9.1467$

3.
$$X = 168$$
, $Y \approx 9.1467$