Question 2

Knowing that a human eye has an osmotic pressure of 7.97 atm at 37.0° C, an eye-drop solution with the same osmotic pressure and temperature is prepared by adding 0.242 g of NaCl in 25.0 mL water. Calculate the van't Hoff factor for NaCl in this solution. Assume the density of the solution to be 1.00 g/mL.

		-

Consider the following reaction

$$H_2S(g) + I_2(s)$$
 \longrightarrow 2HI(g) + S(s) $K_p = 1.34 \times 10^{-5}$ at 60°C

2.00 g solid iodine (I_2)

A 5.00 L reactor contains the following initial mixture at 60°C

a.	Ind	dicate whether the following statements are true of false		
	i.	The solubility of a gas in water decreases with increasing temperature	True	False
	ii.	The presence of a non-volatile solute in a solvent lowers the vapor pressure of the solution		
	iii.	Henry's law states that the amount of a gas dissolved in a solution is directly proportional to the pressure of the gas above the solution		
	iv.	A liquid-liquid solution that obeys Raoult's law is called an "ideal solution"		
	v.	Colligative properties are based on the number of particles in solution, whatever the "size" of the particle.		
	vi.	The addition of an ionic compound to any solvent will cause a boiling point depression.		

b. The gas $\mbox{Arsine,} \mbox{ } \mbox{AsH}_{3} \mbox{ decomposes as follows:}$

$$2AsH_3(g)$$
 $2As(s) + 3H_2(g)$ $\Delta H = +122.8 \text{ kJ}$

Question 9	9
------------	---

a.	Order the following from the strongest to the weakest base	
	i. H_2O ii. CH_3NH_2 iii. ClO_4^-	
	strongest base	weakest base
b.	Arrange the following aqueous solutions in order from most a	acidic to most basic.
	i. 0.1M KF	
	ii. 0.1M KNO ₃	
	iii. 0.1M NH ₄ Cl	

Calculate the mass of KNO

Question 11

A 20.0 mL sample of 0.10 M formic acid (HCOOH) was titrated with 5.0×10^{-2} M Ba(OH) $_2$. K_a for HCOOH is 1.8×10^{-4} .

a. Calculate the pH of the solution upon the addition of 15.0 mL of ${\rm Ba(OH)}_2$ to the sample.

Question	11	(cont)	١
いいしつけいけ			,

h	What volume of $Ra(OH)$.	is needed to reach the equivalence poir	nt?
υ.	virial volume of Da(OII)	, is necuca to reach the equivalence poil	11.

2 marks

c. Calculate the pH of the solution at the equivalence point.

3 marks

Answers

b. volume at equivalence point : c. pH at equivalence point :

Solid NaI is slowly added to a solution that contains both ${\rm Pb(NO_3)}$

a. Predict the sign of ΔS of the system for each of the following processes

	∆S < 0	$\Delta S > 0$
i. A liquid that boils		
ii. Sugar that crystallized out from a supersaturated sugar solution		
iii. Iron rusts (formation of Fe_2O_3 from pure Fe and O_2)		
iv. $A-B(g) + C-D(s) \longrightarrow A-B-C(g) + D(s)$		
v. $N_2O_4(g) \longrightarrow 2NO_2(g)$		
vi. NaCl(s) \longrightarrow Na ⁺ (aq) + Cl ⁻ (aq) ! H_{sol} = +4.0 kJ/mol		

b. For mercury (Hg), the enthalpy of vaporization is 58.51 kJ/mol and the entropy of vaporization is 92.92 J/K.mol. What is the normal boiling point of mercury?

Answer		
b. T _b :		

Consider the following reaction

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

Will the reaction be spontaneous at each of the following temperatures? Show your work. (assume that ΔH° and ΔS° do not change very much within the given temperature range)

- a. 25.0°C
- b. 60.0°C

Answers

\sim		4	_
(J	uestion	1	5

Complete the "experiment 2" laboratory data sheet and find the molar mass of the unknown no 3.

6 marks

The solid unknown added is a non-ionic compound, completely soluble in cyclohexane.

Experiment 2

COLLIGATIVE PROPERTIES DATA SHEET

k،	cvclohexane =	20.2°C.kg.mol ⁻¹	Τı	cyclohexane = 6.55°C

Data for the Unknown Solute/Cyclohexane Solution

Unknown Number: 3			
Mass of empty test tube, stopper, beaker		g	1 7.2237
Mass of test tube, stopper, beaker, &	cyclohexane	g	204. 7 3
Mass of test tube, stopper, beaker, &	unknown solute/cyclohexane solution	g	204. 4
Mass of cyclohexane		g	
Mass of unknown solute		g	
Freezing Temperature of unknown so	lute/cyclohexane solution	°C	4.2
Molar mass of unknown solute		g·mol- ¹	

Sample calculation.		