DAWSON COLLEGE DEPARTMENT OF MATHEMATICS

FINAL EXAMINATION

CALCULUS-III

May 24, 2016	Time: 2:00 pm-5:00 pm
Instructor: A. Panait, T. Kengatharam	
Name: ID:	

Instructions:

- Translation and regular dictionaries are permitted.
- Scienti c non-programmable calculators are permitted.
- Print your name and ID in the provided space.
- This examination booklet must be returned intact.

This examination consists of 20 questions. Please ensure that you have a complete examination before starting.

(3) [5 marks]Approximate the sum of the convergence series

(4) [5 marks] Evaluate the integral $\int_0^\infty xe^{-x^3}dx$ as an in nite series. (Hint: You may use $\sum_{n=0}^1 \frac{x^n}{n!} = e^x$)

(5) [5 marks]Consider the curve with parametric equations $x = e^t$; $y = te^{-t}$. Find $\frac{dy}{dx}$. For which values of t is the curve concave upward?

(6) [5 marks]Sketch the curve with polar equation $r=1-\cos$ for $0 \leq <2$.

(7) [5 marks] Find the equation of the tangent line to the curve with parametric equations $x = 1 + \sqrt{t}$; $y = e^{t^2}$ at the point (2; e).

(8) [5 marks] Find the arc length of the curve $\underline{r}(t) = (\cos t; \sin t; \ln(\cos t))$ for $0 \le t \le -4$.

(9) [5 marks] Show that the curvature of a circle with radius a is $\frac{1}{a}$.

(10) [5 marks] Find the equation of the osculating plane to the curve $\underline{r}(t) = (t; t; t)$ at (1; 1; 1).

(11) [5 marks]Study the continuity of

$$f(x;y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x;y) \neq (0;0) \\ - & \text{if } (x;y) = (0;0) \end{cases}$$

(13) [5 marks] Find all critical points of f(x; y) = 3y - 2y - 3x + 6xy and classify them.

(14) [5 marks]If a particle with mass m moves with position vector $\underline{r}(t)$, then its angular momentum is de ned by $\underline{L}(t) = m\underline{r}(t) \times \underline{v}(t)$ and its torque as $\underline{r}(t) = m\underline{r}(t) \times \underline{a}(t)$, where $\underline{v}(t)$ and $\underline{a}(t)$ are the particle's velocity and accelaration respectively. Sh

(17) [5 marks] Find the volume of the solid that lies inside the sphere x + y + z = 16 and outside the cylinder x + y = 4.

(18) [5 marks]Compute the volume of the tetrahedron bounded by the plane x + 2y + 3z = 6 and the three coordinate planes.

(19) [5 marks]Using cylindrical coordinates evaluate $\int \int \int_E x \, dv$ where E is the solid that lies within the cylinder x+y=1, above the plane z=0 and below the cone z=4x+4y.

(20) [5 marks]Prove that $\int \int \int_E z e^{(x^2+y^2+z^2)^6} dV \le 0$, where E is the lower hemisphere $\{(x;y;z) \mid x+y+z \le 1; z \le 0\}$.

(Hint: you may use the spherical coordinates $x = \sin \cos y = \sin \sin z = \cos$ for which $dV = \sin d d$ d d d