
The Riemann Sum and the Definite Integral 

We begin our introduction to the Riemann Sum by considering non-negative functions which are 
continuous over an interval � > � @ba, .  To simplify the explanation and the calculations, the interval
� > � @ba,  will be divided into subintervals of equal width, and the sample points will correspond to
the right endpoints of the subintervals.  A more general/rigorous treatment of the Riemann Sum 
may be found in the calculus textbook used by Pure and Applied Science students. 

Let the non-negative function  �� ��

�'���   and where bxn � .  For each subinterval we 
construct a rectangle as shown in the diagram. 

The base of each rectangle is x�' .  The height of rectangle k (the rectangle on the subinterval 
with kx  as right endpoint) is � � � �kxf .  It follows that the area of rectangle  k  is  � � � �xxf k �'  .  The 
sum of the areas of all  n  rectangles is called the Riemann Sum.  I.e. the Riemann Sum is equal 

to the expression  � � � ��¦
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 .  We see that the Riemann Sum is an approximation of the exact 

area under the graph of  f  from a to b.  The larger the value of  n  the better the approximation.  
It can be proven that the limit at infinity of the Riemann Sum is the exact area under the graph of  
f  from a to b.  This limit has a special name and notation.  It is called the definite integral. 

Definition of Definite Integral   If  f  is a continuous function defined on � > � @ba, , and if

� > � @ba,  is divided into n equal subintervals of width
n

abx ��� �' ,  and if  xkaxk �'���   is the 

right endpoint of subinterval k , then the definite integral of  f  from  a  to  b  is the number 
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Note:  In the following two examples we consider non-negative functions on the interval  �> �@ba, .
As explained last page, in such cases the definite integral from  a  to  b  is the area under the 
curve from  a  to  b (i.e. the area between the curve and the x-axis).  The summation formulas in 
the appendix will be needed in the solutions of these examples. 

Example 1  Use the definition of definite integral to evaluate   � � � �dxx�³ ��
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Example 2  Use the definition of definite integral to evaluate   � � � �dxxx�³ ��
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Until now we have only considered non-negative functions on the interval  � > � @
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6. � � � � � � � � 3
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