The Riemann Sum and the Definite Integral

We begin our introduction to the Riemann Sum by considering non-negative functions which are continuous over an intervaa, b>. To sime blify the explanation and the calculations, the interval a, b> will be divided into subintervals of equal dth, and the sample points will correspond to the right endpoints of the subent vals. A more general/rigorous treatment of the Riemann Sum may be found in the calculus textbooledsby Pure and Applied Science students.

Let the non-negative function

 !2–@R-3•3H•3…£0˜Q30hï5 aˆPy(¬¼ …CC"H"48Pq™Z!ñˆ¶˜Qi…3•\$ióP ‰5)PP

and wherex b. For each subinterval we construct a rectangle abown in the diagram.

The base of each rectangle is. The height of rectangle (the rectangle on the subinterval with x_k as right endpoint) is x_k . It follows that the area of rectangle is f x_k 'x. The sum of the areas of all rectangles is called the iemann Sum. I.e. the Riemann Sum is equal to the expression $\frac{1}{1}$ f x_{k} 'x . ' n k f x_{k} 'x . We see that the Riemann Sisman approximation of the exact 1 area under the graph of from a to b. The larger the value of the better the approximation. It can be proven that the limit at infinity of the Riemann Suthesexact area under the graph of f from a to b. This limit has a special name and notation. It is called theite integral.

Definition of Definite Integral If f is a continuous function defined $\cos b$, and if $\mathbb Q$ a, b is divided into nequal subinterva of width 'x $\frac{b}{n}$, and if x_k a k'x is the right endpoint of subinterval, then the definite integral df from a to b is the number

> 3f x dx $\lim_{n \to +} \frac{1}{n}$ f x_k 'x n $\begin{array}{cc} \mathbf{m} \mathbf{n} & \mathbf{n} \ \mathbf{n} \circ \mathbf{f} & \mathbf{k} \end{array}$ \mathbf{r} b a fxdx lim t fx 'x 1 lim

Note: In the following two examples we considedn-negative functions on the interval b $@$ As explained last page, in such catesdefinite integral from to b is the area under the curve from a to b (i.e. the area between the curve and theosis). The summation formulas in the appendix will be needed in the solutions of these examples.

Example 1 Use the definition of definitentegral to evaluate $32x^2$ 3 dx . 4 Ω

We subdivide the interva $\mathbf{\mathfrak{g}},4\;$ into n equal subinterva of width n n $x \frac{4}{10} \frac{0}{1}$.

Then
$$
x_k
$$
 0 $k \frac{4}{n} = \frac{4k}{n}$ and $f_{x_k} = 2 \frac{84k}{\text{cm }1}^2$ 3 of $x_k = \frac{32k^2}{n^2}$ 3.
\n $f_{x_k} = \frac{82k^2}{\text{cm }2} = 3 \frac{84}{\text{cm }1} = \frac{128k^2}{n^3} = \frac{12}{n}$
\n $\int_{k=1}^{n} f_{x_k} x = \int_{k=1}^{n} \frac{828k^2}{\text{cm }1} = \frac{12}{n} \frac{12}{\text{cm }1} = \frac{128}{n} \int_{k=1}^{n} k^2 = \frac{12}{n} \int_{k=1}^{n} 1 = \frac{128}{n^3} \frac{3 \text{ m }1 \cdot 2 \text{ m}}{6} = \frac{12}{n} \frac{5 \text{ m}}{6} = \frac{12}{n} \frac{5 \text{ m}}{6} = \frac{12}{n} \frac{5 \text{ m}}{6} = \frac{128 \text{ m}}{6} = \frac{128$

Example 2 Use the definition of definite integral to evaluat \otimes 8x x^2 dx. 5

2

Until now we have only considered non-negative functions on the interval $\qquad \qquad @$

2. $\frac{2}{10}$ 10 $\frac{4}{10}$ 10

6.
$$
\begin{array}{ccccccccc}\n x & \frac{4}{n} & 0 & x_k & 1 & \frac{4k}{n} & \text{and } f & x_k & \frac{5}{n} & \frac{4k}{n} & \frac{4k}{n} & \frac{28}{n} & \frac{4k}{n} & \frac{28k}{n} & 3 & \frac{8}{n} & \frac{64k^2}{n} & \frac{28k}{n} & \frac{3}{10} & \frac{34}{10} & \frac{34k}{10} & \frac{34k^2}{10} & \frac{256k^2}{10} & \frac{112k}{n^3} & \frac{12}{n^2} & \frac{112k}{n} & \frac{12}{n} & \frac{12}{n} & \frac{12}{n} & \frac{12}{n} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{1} & \frac{112}{10} & \frac{5}{1} & \frac{1}{1} & \frac{256}{10} & \frac{5}{1} & \frac{1}{1} & \frac{112}{10} & \frac{5}{1} & \frac{1}{1} & \frac{256}{10} & \frac{5}{1} & \frac{1}{1} & \frac{112}{10} & \frac{5}{1} & \frac{1}{1} & \frac{1}{1} & \frac{256}{10} & \frac{5}{1} & \frac{1}{1} & \frac{112}{10} & \frac{5}{1} & \frac{1}{1} & \frac{1}{1} & \frac{256}{10} & \frac{5}{1} & \frac{1}{1} & \frac{112}{10} & \frac{5}{1} & \frac{1}{1} & \frac{1}{1} & \frac{256}{10} & \frac{5}{1} & \frac{1}{1} & \frac{112}{10} & \frac{5}{1} & \frac{1}{
$$

10.
$$
\frac{4}{-}
$$
 5 and $\frac{16}{-}$ 5 $\frac{4}{-}$ 5 $\frac{5}{-}$ 5 $\frac{3}{1}$ 5 $\frac{5}{-}$ 5 $\frac{5}{1}$ 5 $\frac{16}{-2}$ 28 $\frac{28}{-2}$ 15

APPENDIX

D.

The following are useful formas for working with summation notation.

1.
$$
\int_{k1}^{n} C \cdot \text{nc}
$$

\n2. $\int_{k1}^{n} Ca_k \cdot C \cdot \int_{k1}^{n} a_k$
\n3. $\int_{k1}^{n} a_k \cdot b_k \cdot \int_{k1}^{n} a_k \cdot \int_{k1}^{n} b_k$
\n4. $\int_{k1}^{n} a_k \cdot b_k \cdot \int_{k1}^{n} a_k \cdot \int_{k1}^{n} b_k$
\n5. $\int_{k1}^{n} k \cdot \frac{n n 1}{2}$
\n6. $\int_{k1}^{n} k^2 \cdot \frac{n n 1 2n 1}{6}$
\n7. $\int_{k1}^{n} k^3 \cdot \frac{n^2 n 1^2}{4}$